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Evolutionary algorithms have been applied in various domains to
great success due to their ability to explore large search spaces efficiently.
Their stochastic nature means that they are not easily predictable, but
it is that inherent randomness that allows them avoid local optima. A
problem that benefits greatly from these characteristics is the N-Queens
problem, which involves placing N chess queens on a N x N chess
board in such a way that no two queens threaten each other. This
problem entails a N x N search space, which we in this project have
reduced to N! by only allowing one single queen per column on the chess
board. Methods such as brute force and backtracking have been proven
useful, but are more computationally expensive at increasing sizes of IV,
meaning that a more a scalable approach is needed. In this project, we
propose a Genetic Algorithm, implementing partially mapped crossover
recombination algorithm with duplication removal. Our measurement of
performance was based on the amount of iterations needed to find correct
answer to a 8-Queens problem, averaged over 100 randomly generated
initial board populations. This measurement approach was then used to
perform a combination search to find the best combination of genetic
operators (strategies) and a parameter values.
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1 Introduction

This report was created as a part of the Artificial Intelligence Course at Jonkoping
University, and details the specific application of genetic algorithms to solve the
N-Queens problem. This was done with the goal of learning more about how evolu-
tionary algorithms can be applied to problems, and deepening our understanding
of scientific computation and exploration.

The broader area of evolutionary algorithms (EAs) have proven to be effective in
tackling a wide range of problems [8]. Unlike deterministic algorithms, evolutionary
algorithms rely on a stochastic process, enabling them to avoid local optima and
converge towards more optimal global solutions [8]. This characteristic makes them
especially suitable for problems that inherently have a larger search space.

The topic of this report relates to one of those problems, namely the well-known
N-Queens problem. The task is to find valid placements of N chess queens on
N x N chess board. This means that no queen can be placed in a column, row, or
diagonal line, where there already exists another queen. A solution to the N-Queens
problem is therefore only valid if all N queens have been placed on the board and
none of them are under threat [1].

This problem can be trivially solved via brute force at smaller sizes of N. But as
N grows, the problem becomes computationally unfeasible given a naive brute
force method. This is where algorithms that can handle large search spaces prove
themselves useful. A naive N-queens search space has N x N amount of possible
solutions. In this project we’ve restricted the search space by limiting queens to
one column each, which results in a search space of N! possible solutions.

This project focused on comparing different genetic operators, parameter values,
and additional evolutionary strategies, with each other to find the best combination
from those tested in this project. Our aim was to systematically compare differ-
ent combinations through the use of parameter tuning, to generate 500 different
combinations. Where combinations included different genetic operators, parameter
values, and additional strategies. This resulted in 500 separate Genetic Algorithm
setups that we individually evaluated 100 times on randomly generated initial
board layouts. Performance across all setup runs were then averaged, and our final
setup was the top performing Genetic Algorithm.

From these results came a couple of insights: the first is that duplication removal
is crucial for removing many invalid individuals from a population. Additionally,
duplication removal in tandem with partially mapped crossover (PMX) performed
especially well. Another insight was that adjusting mutation rate (starting low,
ending high) and crossover rate (starting high, ending low) variably each generation
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did not show clear performance benefits. We saw the same thing happening once
we introduced genocide into the algorithm (starting high, ending low). Overall we
found that evolutionary algorithms are a very powerful tool to solve problems such
as the N-Queens problem, and that with a more in depth study into other types of
genetic operators, even better results could be achieved.

2 The N-Queens Problem

The N-Queens problem is a well-known combinatorial problem within computer
science, where N chess queens are placed on a N X N chess board in such a way
that none of them threaten each other. A chess queen can move in any direction:
horizontally, vertically, or diagonally. Therefore a valid solutions requires that no
two queens were placed in the same column, row, or diagonal line. This problem
can be represented by a one-dimensional array where indices represents rows, and
values in the array represents columns [1].

Various evolutionary algorithms have been used to solve the N-Queens problem due
to its combinatorial nature. An example of this comes from Sarkar and Nag [7], who
propose a Genetic Algorithm that begins with a random population of chromosomes.
Their fitness function evaluated the number of conflicts between queens, with the
aim of minimizing them. The Order 1 Crossover strategy was used to merge traits
from random pairs of parents, while preserving valid queen placements. They
additionally made use of a mutation operator with a low probability of causing
mutations.

Similarly, Jain and Prasad [0] presents another Genetic Algorithm for solving
the N-Queens problem. Unlike Sarkar’s and Nag’s version, this algorithm uses an
advanced mutation operator that specifically targets conflicting queens. Instead of
applying random mutations, this strategy swaps the positions of queens that are in
conflict with each other, aiming to reduce the overall number of conflicts in the
board. This approach ensures that the changes made are more likely to lead to a
solution, rather than just random mutations.

Boiikovié, Golub, and Budin [2] present a Global Parallel Genetic Algorithm, which
operates on a master-slave framework. The master (the main thread) manages
population control and mutation, while slaves (secondary threads) perform selection
and crossover operations. Their approach uses a 3-way tournament selection process,
which allows multiple slaves to make the selection at the same time. This parallel
architecture may enhance computational efficiency by allowing the workload to be
distributed across multiple processors, enabling faster convergence and the ability
to handle larger problem sizes more effectively.
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Chauhan, Gonder, and Garg [1] propose an innovative Genetic Algorithm approach
utilizing a hybrid crossover operator. Their algorithm aims to eliminate conflicts
between queens by employing a fitness function that evaluates conflicts through
paired interactions. The fitness score of a solution is determined by the number
of diagonal collisions, with the algorithm ranking solutions from highest to lowest
fitness value. The parent selection method incorporates a mating probability, which
determines whether a solution can be chosen for crossover, resulting in unique parent
solutions. For generating new solutions, the algorithm employs the Position-Based
Crossover (PBC) technique, which combines traits from selected parents.

As we were novices to the subject of evolutionary algorithms, we saw an opportunity
to explore and compare many different evolutionary strategies. Although the
papers above specify different Genetic Algorithm approaches, it was not clear to
us why certain genetic operators, strategies, and so on, were not considered for
this algorithms. Therefore a more comprehensive approach to evaluating genetic
algorithms was decided upon.

3 Algorithm

3.1 Solution Representation

Solutions to the N-Queens problem are represented within this project as permuta-
tions of 1-Dimensional arrays of length N, filled with integers between 1 and N,
with no duplicate values. Indices in the arrays represents each column on the chess
board, while the integer values represent each column. This naturally removes all
vertical and horizontal conflicts. The following is an example solution in both its
NumPy array representation, and on a chess board [5].

[63581427]
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Figure 1: Example array representation in a board view

3.2 Fitness Function

The fitness function selected for the algorithm is based on the number of conflicts
counted in given a board state. The maximum number of possible conflicts can be
calculated as follows.

e = () = 5 ()

Where N equals the board size N x N as well as the number of queens. Using this
we normalize the counted number of conflicts in a state.

Ccount
Cmaz

(2)

fitness =1 —

A valid solution 1 represents no conflicts. A worst case 0 represents C,,,, conflicts.

3.3 Operators

The algorithm combines evolutionary operators on individuals within a population
in order to reach the goal state, (i.e. the solution to the problem). There are three
main evolutionary operators: selection, recombination and mutation, which
will be used later on in the literate code section 3.4.
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3.3.1 Selection

The selection operator is generally based on the “survival of the fittest” concept
from Darwinian evolution theory. The goal is to use probability to pick the most fit
candidate solutions in the current population, to be used either passed on to the
next generation or be recombined. More precisely, given a population of size N, the
selection operator outputs m individuals, where m C N, chosen based on a heuristic
function h. The heuristic function can be defined in numerous ways. For parental
selection, we used tournament selection. This selection method first defines a
tournament group size of m as a subset of the whole population N. Subsequently,
m random and different (but potentially identical in terms of genome) candidate
solutions are randomly chosen. Thereafter, each chosen individuals fitness score
is evaluated. The two most fit individuals of the tournament are then chosen for
reproduction. The processes will continue until the requested amount of parents
has been chosen. The requested amount of offspring is submitted as a fraction of
the population.

Additionally we included a survival selection operation after parent selection,
recombination, and mutation have been performed. In contrast to parent selection,
for survival selection we chose another approach. We first evaluate the fitness of
the combined set of parents and offspring. We exponentiate all fitness scores (all
fitness scores are between 0 and 1) by a positive real number and then they are
normalized through division by the sum of all exponentiated scores. The purpose
behind this transformation is to magnify the relative differences between fitness
scores. The fit individuals will have an even higher probability of survival. The
higher the exponentiation factor, the more greedy our algorithm will be, and in
turn, result in a less diversified population. Nonetheless, a new set of candidate
solutions are chosen, in virtue of the exponentiated scores, equal in quantity to
previous population.

Time Complexity: The time complexity of each tournament in parent selection
is no more than O(n). However, survival selection has a time complexity of O(n +
nlog(m)). Here, n is how many values are chosen amongst and m, the amount of
candidates to be drawn from n individuals. The time complexities are related to
the precise implementation of NumPy’s random.choice function. With m elements
to be chosen among n possible choices, each with an associated probability p, the
time complexity is increased.
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3.3.2 Recombination

The recombination operator is one of the primary tools used to achieve pop-
ulation diversification. The parents that have been chosen through the use of
the selection operator, are subsequently passed as input to the recombination
operator.

The recombination transform can be represented as:
R:P—O0O

where R is the recombination transform, P is the set of input parents, and O is
the set of output offspring.

The transformation outputs the same of quantity of offspring as the quantity of
parents that was inputted. Note that the set of offspring that can possibly be
generated is dependent on the initial candidate solution, and more importantly, the
recombination strategy itself. Thus, various strategies will entail a varying amount
of introduced diversity within the offspring from the base population. There exists
a plethora of different recombination strategies, but only six where evaluated within
this project’s scope. The table below highlights those chosen, together with their
spacetime complexity 3.3.2.

Name Spacetime Complexity
even cut_and crossfill O(n) space, O(n) time
one_ point_ crossover O(n) space, O(n) time
two__point__crossover O(n) space, O(n) time

partially mapped crossover | O(n) space, O(n?) time
pmx_dp_rm O(n) space, O(n?) time
ordered__crossover O(n) space, O(n?) time

Table 1: Recombination Strategies with Spacetime Complexity

Lastly, we’ll make an observation of typical recombination rates. Typically, re-
combination rates vary between 70% and 90%. However, in the final solution,
the recombination rate is set dynamically each generation. It is in fact regulated
by a dynamic exploration factor which starts off large in the beginning of the
evolutionary process and decreases until it reaches 10%.

The exploration factor is defined as:

Exploration Factor = max (0.1, n) ,
n+ g~
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where n is the genome size, g is the current generation, and k € R. Below follows a
visual representation of the exploration factor.

Exploration Factor by Generation
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Figure 2: n = 8, g € [0,300] and k = [1, 2 1].

3.3.3 Mutation

Lastly, the mutation operator takes offspring from the recombination step as
input, and mutates one or several genes inside of each candidate solution genome.
More specifically,

M - Oom’ginal — Omutated

where M is the mutation transform, Oorigina is the set of unchanged input offspring,
and O,pigina 1 the set of mutated output offspring.

The mutation rate is a percentage probability that a mutation occurs. Note that
inside the final solution, the mutation rate is set to be dynamic, starting off low at
10%, and increasing for each subsequent generation until it reaches a maximum, user
set mutation rate. Meaning, the algorithm will become more and more exploitative
for each subsequent generation.
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The exploitation factor is defined as:

Exploitation Factor = max (0.1, 1-— n > )
n+ gk

where n is the genome size, g is the current generation, and £ € R.

Below follows a visual representation of how the exploitation factor changes over
generations.

Exploitation Factor by Generation
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Figure 3: Here n = 8, g € [0,300] and k = [3, 3, 1].

The mutation strategies that were investigated withing this project are listed in
the table below, along with their spacetime complexity.

Name Spacetime Complexity

swap_ mutation O(n) space, O(n) time

inversion__mutation O(n) space, O(n) time

duplicate_replacement | O(n) space, O(n) time

creep_ mutation O(n) space, O(n) time
O(n) (n)

scramble mutation n) space, O(n) time

Table 2: Mutation Strategies with Spacetime Complexity
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3.4 Literate Code

There are several evolutionary operators whose efficiency were experimented with.
The general structure of the algorithm was iteratively improved upon throughuut
the course. Initially it only contained static numeric parameters. As of the final
version of the evolutionary algorithm, three of the parameters have been made
dynamic. Those are: the recombination rate, mutation rate and genocide rate. The
dynamcity introduced aids in the fine-tuning of the algorithm to specific choices of
the genome size n. Our final evolutionary algorithm is presented below in literate
code, see 1.

Algorithm 1 Literate Code: Final Evolutionary Algorithm
Require: N >0 A (N # 2V 3),where N represents the problem dimensionality.
evaluation_ counter = 0
while (is_max_evals_reached = False) A (is__solution = False) do
calculate dynamic recombination and mutation rates
select a subset individuals from the population as parents
recombine the parents and their generate offspring
mutate the offspring
select individuals for survival from the combined set of parents and offspring
update evaluation__counter += [size(population) + size(offspring)]
if solutions exists in population then
1s_ solution = True
end if
calculate dynamic genocide rate
if population has stagnated then
apply dynamic genocide
end if
end while

The worst case spacetime complexity of the final algorithm is highlighted in the
table below.
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Component Time Complexity | Space Complexity
Recombination O(n?) O(n)
Selection of Individuals O(n + nlog(m)) O(n)
Mutation of Offspring O(n) O(n)
Survival Selection O(n) O(n)
Solution Check O(n) O(1)
Stagnation Check and Genocide O(n) O(1)
Total O(n?) O(n)

Table 3: Time and Space Complexity Analysis of the Algorithm

4 Experimental

4.1 Hardware & Software

The experiments were carried out by the use of a wide range of hardware setups.
That is, both personal laptops and desktop PCs. The hardware requirements for
this project are modest, and most modern computers will handle the tasks without
issue.

With regards to software, all experiments were conducted using Python3. Several
external libraries within Python were used, such as Numpy, Pandas, Plotly, Mat-
plotlib, Seaborn, and SciPy. In addition to external libraries, standard Python
libraries like ast, time, and logging were also used. Specific version details on these
libraries are listed in the accompanying requirements.txt file.

4.2 Methodology

Our initial solution was heavily inspired by one outlined in Introduction to evolution-
ary computing (2003) [3]. That solution, for example, included “Cut-and-crossfill’
(even_cut_and_ crossfill by our notation), swap mutation and the rate of recombina-
tion. We subsequently incrementally made adjustments. Included in the adjustments
is the implementation of new strategies for some of the basic evolutionary opera-
tors. Moreover, we evaluated the performance of novel techniques to avoid local
minima. One such is the application of a genocide operator. It is triggered when the
population stagnates. What is optimal is heavily context dependent. We narrowed
our analysis to fewer dimensions than 15. This is in part due to that we think
it suffices for generalization. Meaning, we can observe behavioural changes as we
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increase the dimensionality from say 4 to 15. Those may subsequently be further
generalized for even higher dimensionality. The experimental results and analysis
to substantiate that claim will be presented in the results section 5. Nonetheless,
hardware limitations do in any case limit our explorations of higher genome sizes.

Ratio of Fundamental Solutions to Search Space (N-Queens)

1072 4

1073 4

104 4

10-5 4

Solutions / Search Space (log scale)

1077 4

107° 4

1079 4 - - T - - T T - -
4 6 8 10 12 14 16 18 20
N (Genome Size)

Figure 4: The decline of available solutions with an increasing genome size

Figure 4 highlights the exponential decrease of the available amounts of solutions
as a fraction of the state space for genome sizes between 4 and 25. The y-axis is
logarithmically scaled. One observes that the fraction of solutions at-least decrease
exponentially. The effective search space can be reduced down to n!, which for large
n is not searchable in a reasonable about of time, based on the teams available
hardware.

Nonetheless, with this limitation in genome size, we did make an attempt in
fine-tuning our parameters and operators. New versions were without exception
bench-marked against the current version.

To begin with, our evaluation metric was the sum of all fitness evaluations made on
candidate solutions. It is an effective metric that scale both with the population size,
amount of offspring, in addition to genome size. In some instances, we additionally
counted the amount of generations it took for algorithmic convergence. However,
this was mainly done for visualization purposes.

As there is a strong stochastic nature to evolutionary algorithms, it is impossible
to find the set perfect set of configuration parameters. The experiments that were
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conducted primarily focused on the eight dimension. However, some experiments
were conducted in higher dimensions, up to 15.

4.3 Sampling

We desire to tune our parameters in such a manner as to decrease the expected
evaluation count in our given context. Since there is a multitude of parameter
combinations (much more than we have computation power to test), it is of vital
importance that we strategically configure our parameters for each run. They
should be configured in such a manner to cover a wast but different parts of the
topological landscape (search space). Introducing multiple agent to cover the same
subset of the topological landscape is redundant.

All sampling techniques are based on generating sample points between 0 and 1.
These sample points are subsequently used to scale the parameter space, that is,
pick samples from the parameter space.

There were four sampling techniques we employed, Uniform (grid) sequences, Halton
sequences, Sobol sequences and Latin hypercube sampling sequence. Unfortunately,
all suffer from the curse of dimensionality. Meaning, there is a exponential growth in
the number of required sample points as the dimensionality (genome size) increases.
However, the way in which each of them distribute their points across the search
space differs. It leads to that some sampling methods better handle the increase in
dimensionality better than others.

A uniform sequence simply splits each dimension in uniform slices and thereafter
places point at each intersection. It is rather simple to implement however lacks
efficiency in higher dimensions. The space diagonal of a hypercube increases in
length for each dimension that is added to it. It entails that there for each added
dimension is a larger unexplored hyperspace, i.e. no samples. Thus, uniformly
sequencing each dimension works well in small dimensions but tends to scale
poorly.

The Latin Hypercube Sampling method derives its name from a "Latin Square',
which means that each element just occurs ones in a row and column. In 2D, for
each dimension, it randomly picks a grid point for the other dimension. Latin
Hypercube Sampling performs well in small and large dimensions dimensions
because it balances between exploration and exploitation, avoiding unnecessary
evaluations whilst it ensures that each subset of the search space gets covered.

Halton sequences use a unique prime for each dimension as a base. Thereafter, it
uses these fractional increments in these primes to generate points. Each element
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in a Halton fraction is unique, so the space is uniquely sampled. They are also
uniformly distributed, they are designed to minimize discrepancy, which tell us
about how well points cover the search space. They fill space better than the
uniform distribution, however, does face challenges in higher dimensions, that is, it
becomes less uniform.

A Sobol sequences are more complex than Haltons sequence but tend to be less
cluttered, especially in higher dimensions. Is more effective than Halton sequences

[9].

The LHS was the sampling method of our choice. It is utilized in generating the
results in section 5.

4.4 Strategies and Numeric Parameters

Using our sampling method of choice, thousands of setups were instantiated in the
eight dimension (eight-queens). Each setup was run 10 times. The evaluation count
of each setup for all of the ten runs was summed and thereafter divided by 10, that
is, the average evaluation count per setup was calculated. We logged all important
and relevant data associated with each setup. The logs were later read by several
visualization function and insights were concluded through visual inspections. The
visual inspections of the results included a bar plot highlighting the performance
of the generated configurations. The best performing setup, based on our most
comprehensive configuration setup in eight dimensions also became the basis for a
choice of the numeric parameters. The operator strategies were chosen on the basis
of visual inspection from several plots. The recombination strategy was selected
based the heatmap in figure 7. Thereafter, the mutation strategies were evaluated
by stacking the total evaluation count for each mutation strategy, the one with the
lowest total is said to be the best performing. Additionally, a boxplot highlights
the variance in performance and further supports the superiority of our selected
mutation strategy in the given context. Lastly, we plotted all recombination rates
against the mutation rates and coloring each data point based on its evaluation
count. It was done in hopes of finding a functional dependency between the two
patterns. The graph was made whilst keeping all other parameters constant.

4.5 Survival weighting exponent
Ability to select survival weighting exponent was a late addition to the algorithm

and has not been included in LHS experiments. In order to see the impact of
the survival exponent two experiments were conducted. Both using the optimal
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algorithm found previously. For the first a range of exponents was tested a low
number of runs to see where the algorithm started to perform noticeably worse.
From this the range 0.5 to 57.5 was selected and used to test 1000 runs to find
the best performing exponent. The second experiment was conducted by testing
3000 runs of an exponent and averaging fitness scores per generation. This was
done for the average population fitness, fitness of the best individual and fitness of
the the worst individual. This was done for 3 exponents to visualise the impact on
population diversity.

4.6 Cross-dimensional Experiments
4.6.1 Analysis of Recombination Rates

Investigates how the recombination rate impacts evaluation count as dimensionality
increases, all else is kept constant. The recombination operator inherently introduces
diversity. The higher the recombination rate, the higher the diversity. The hypothesis
is that the effectiveness of high recombination rates drop off as the dimensionality
grows. The results highlight our performance in 7 and 9 dimensions.

4.6.2 Analysis of Dynamic Recombination and Mutation Rates

The dynamic mutation and recombination rates are run against an identical setup.
The only difference is the dynamic mutation and recombination rates are adjusted
by the exploration and exploitation parameters. Each of the methods, the static and
dynamic one, get as input the same initialized population, both output a generation
count. The generation count represents the amount of generations it took to reach
the solution. The evaluation of the outcome for each setup is visualized in a two
dimensional line plot. An average is calculate for both graphs. They are colored in
two different colors and put each other for easier comparison. A label is outputted
with the average generation count displayed with two decimals of precision. In
the static scenario, the recombination and mutation rates are static and kept high
throughout. However, in the dynamic setup, the recombination rate starts at its
maximum and subsequently declines. The mutation rate does the opposite. The
results are visually displayed in genome sizes of 8, 11 and 13.

4.6.3 Is Genocide beneficial?

Quite often the population gets stuck at certain bottlenecks, that is, local minima. To
tackle this, and by brute force introduce diversity upon stagnation, we investigated
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the effectiveness of genocide. More precisely, given a scenario in which the maximally
fit candidate solution doesn’t increase in its fitness score for three consecutive
generations, a fraction of the population is genocided. Stagnation is measured by
a non-change of fitness score within a specified threshold of tolerance ¢ < 0.02.
The tolerance bounds the difference between the previously most fit individual and
the current most fit individual of the population. Upon genocide, each individual
from the initial population is sorted by their normalized fitness score. The fitness
score is exponentiated by a constant. The constant makes it more likely to select
the worst performing candidate solutions for genocide. The genocided portion of
the population is replaced by a newly and randomly generated set of candidate
solutions. These candidate solutions have unique gene values, that is, no horizontal
collisions. The experiment is run for almost fifty starting populations (setups), and
generation count of solution convergence is displayed on the y-axis. Otherwise, a
similar visualization scheme is utilized as in the previous subsection. The dimensions
that were investigated include 6, 8 and 10.

4.6.4 When to trigger Genocide?

Note that the genocide was previously triggered when the difference between the
difference between the currently and previously most fit individual is lesser than
¢ for more than three consecutive generations (the stagnation counter is reset
at each genocide). However, we were interested in investigating if it makes any
notable difference if the genocide instead was triggered one a stagnation of the
mean fitness value of the whole population. The graphs were similarly generated as
before, however, this time, 100 populations were used in testing. The only difference
between plots will be on what basis the evolutionary algorithm triggers genocide.
The results were generated for genome sizes of 6, 8 and 10.

4.6.5 Rate of Genocide?

Lastly, we investigated the the effects of having a dynamic genocide percentage.
The idea is that higher genocide percentages are more desired early on in the search,
and lower rates in the later stages of the search. This is especially meaningful in
higher dimensions. The probability of generating solutions with worse fitness scores
than one already has increases as the dimensionality grows. Additionally, destroying
a large portion of the current population in high genome sizes will destroying the
progression that many of them made.
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4.7 Comparing algorithms

We compared the performance of the original genetic algorithm with the latest
improved version. To evaluate the improvements in the new genetic algorithm,
we benchmark both algorithms on two different genome types: GENOME 8 and
GENOME 12.

Our objective is to assess the efficiency gains in terms of time measured in seconds
and the number of evaluations needed to achieve a solution. We ran both algorithms
for 50 iterations, with a maximum of 10,000 evaluations per iteration, measuring

the average number of evaluations and the average time taken for each iteration.

5 Results & Analysis
5.1 Strategies and Numeric Parameters

Evaluation Count by Strategy (100 Runs/Strategy)

CEOPDE ORI S DI PIS PR F SIS

Figure 5: Bar plot of 500 setups. Ranked in accordance to their evaluation count,
smaller is better. Sorted in ascending order.
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Table 4: Combined Initialization, Recombination, and Mutation Strategies

Category Parameter / Strategy Occurrence

Initialization Random 10
Permutation 10

W~

Recombination | Partially mapped crossover with duplicate removal
Ordered crossover

Partially mapped crossover

Two point crossover

One point crossover

Even cut and crossfill

Mutation Inversion Mutation
Swap Mutation
Duplicate Mutation
Scramble Mutation
Creep Mutation

=W N NN Oy~ Ot

The table above highlights of the specific operators found within the top 20
best performing configurations. One should keep in mind that there is a inherit
stochasticity with respect to the rankings, thus, one should vary of extrapolating
much information from the above top performers. If anything, their combination of
strategies and numeric operators may be stated to work fairly well for the specified
dimensionality and problem set. Nonetheless, we further scaled up the configuration
set in hopes of finding general trends within the specified dimensionality.

Below follows three graphs that visually highlight some of our main results. Lower
values are better, higher values are worse, that is, it took more operations to reach
a solution. Clearly, partially mapped crossover with duplication removal, was the
most fit recombination strategy in this context. It was followed by partially mapped
crossover without mutation and ordered crossover with mutation. Partially mapped
crossover and ordered crossover introduce a great level of population diversification
in addition to removing duplicates (which ensures that a high fitness score is
maintained).
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Heatmap of Evaluation Count by Strategies (n=8 | setup_count = 2000 | 10 Runs)
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Figure 6: Each recombination operator is matched against a unique mutation
operator. Each box is colored based on evaluation count. Partially mapped
crossover (with and without) and Ordered Crossover performed best. The
best performing mutation strategy is duplicate replacement.

Bar Plot of Evaluation Count by Mutation Strategy (n=8 | setup_count = 2000 | 10 Runs)
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Figure 7: Stacks the total evaluation counter across all setups in which the mutation
strategy appears. Duplicate remover performs the best, followed by swap
mutation.
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Box Plot of Evaluation Count by Mutation Strategy (n=8 | setup_count = 2000 | 10 Runs)
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Figure 8: Box plot of mutation strategies. Duplicate replacement and swap mutation
performs the best.

The best performing recombination operators are partially mapped crossover (PMX)
and ordered crossover (OX). It is a excepted result since they both ensure that
their offspring do not have row-wise collisions. This in combination with that they
guarantee a substantial degree of exploration results in quick convergence rates.
Whilst the others recombination operators do offer a decent degree of exploration,
they do not remove duplicates. This makes each of their candidate solutions fitness
scores suffer. This point is further highlighted with the use of duplicate replacement
as an mutation strategy. It systematically and substantially lowers the evaluation
count for the other less performing recombination strategies. However, we desired
more clarity with respect to the relative performance of the mutation strategies.
We made two plots in order to further investigate their performance. Figure 7
highlights the overall performance of each mutation strategy. One can easily through
visual inspection extract that duplicate replacement not only had the lowest total
evaluation count, but also best box-plot performance. Since the dimensionality is
rather low, all will by random happen to find the solution quite often. However,
one has also to keep in mind that these mutation strategies serve different purposes.
Many are exploitation strategies, especially creep mutation and swap mutation.
Thus, one may ideally want to combine between them. For example, only use the
exploitative strategies to fine-tune solutions when they have managed to reach a
threshold fitness score.
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Heatmap of Evaluation Count by Mutation & Recombination Rates (n=8 | setup_count = 5000 | 10 Runs)

B 'g:-..-.-. 40 I L. .'

L L 7 L T i 1. r
R T SR s e LR T
[ - ol it 08 LEr b R . + Tal

" -:':r"':-l”- .:"'f., Tt M- |'|._|= ~ :-:._.:_ . Rt Pl
3}

. I P M . : ST
0%y e "‘-!-'""l.-ll L P Lo o= oy C L - _|I|'-.-||"'! [
b WL L BT IO T SR S
L el e T R R

00

Figure 9: Each point represents a setup, colored by its average evaluation count.
Stochastic pattern, apparent functional dependency.

The above diagram was an investigation into a functional dependency between the
best performing combination of recombination and mutation rates. Unfortunately,
no such functional dependency was observed. Instead a rather stochastic distribution
of the configurations emerged. The reason for not being able to observe a functional
dependency may be because of two reasons. One is that the functionally dependency
may be too complex to be captured in a two dimensional plot. Another is that
there is no pattern, that is, it is supposed to be stochastic. The recombination and
mutation operators introduce stochastic variations into the population, and therefore
the distribution of the best performing setups might be inherently stochastic. In
addition, it might be that the solutions themselves are stocastically distributed in
the space, under which one might expect to observe such a pattern. Nonetheless,
further hypothesis testing may be needed.

5.2 Survival weighting exponent

Within the probabilistic survival selection operator, a weighting exponent has
been included. This is in order to control the trade off between exploration and
exploitation. Further explanation of its influence found in section 3.3.1. To select
a suitable exponent for our final algorithm exponents from 0.5 to 57.5 have been
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explored. An optimal exponent in the case of our final seems to exist in the span
10 to 18 where a maximum efficiency is observed.

Evaluation count by survival exponent (1000 runs/exponent)
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Figure 10: Evaluation of exponents

The impact of the exponent can be clearly seen in the figure bellow testing exponents
0, 15 and 50. An exponent of 0 results in a random selection of survivors and in
turn a large population diversity with fitness scores ranging from 0.6 to 1 when a
solution is found. In this case there is not enough incentive to achieve a high fitness
and as a result the algorithm performs poorly. At an exponent of 15 within our
optimal range, the population is diverse enough to not disregard potential parts
of the solution. It has a much stronger incentive to achieve a high fitness score.
This combination results in a balance between exploration and exploitation and
has given best results. With an exponent of 50 a very high evolutionary pressure is
applied to the population. The result of this is a low population diversity with the
entire population settling between 0.9 and 1. The low diversity prevents optimal
functioning by eliminating individuals which could have been needed to find a
solution.

Population convergence by exponent (3000 runs/exponent)
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Figure 11: Exponent convergence
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5.3 Cross-dimensional Experiments

5.3.1 Analysis of Recombination Rates

setup_eval_count vs. recombination_rate
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Figure 12: Performance Effects of Varying Recombination Rates at n=7
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Figure 13: Performance Effects of Varying Recombination Rates at n=9

We observe that high recombination rates are less effective in higher dimensions
than in lower. Effectiveness is measure by evaluation counts at convergence. In lower
dimensions, high recombination rates entail low evaluation counts. At larger genome
sizes, say 9, the share amount of high evaluation count solutions has increased. In
general, the pattern is expected since there is a higher probability of producing
offspring that have a lower fitness score than their more fit parents. Note that we
also observe a slight shift amongst the best performing solutions as we increase the
genome size. The lower recombination rate in low dimensions do not make a larger
impact since the spaces are small. Even smaller recombination rates stand a great
chance of randomly landing at a solution. This probability is greatly reduced at
higher genome sizes.
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5.3.2 Analysis of Dynamic Recombination and Mutation Rates
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Figure 14: Static vs. Dynamic Recombination and Mutation Rates in n=8
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Figure 15: Static vs. Dynamic Recombination and Mutation Rates in n=11
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Figure 16: Static vs. Dynamic Recombination and Mutation Rates in n=13

The recombination and mutation rates are initially set high. The recombination
rate subsequently decreases and the mutation rate increases. The main idea is to
highlight the effectiveness of exploitation at higher genome sizes. And we surely
observe as we increase n from 8 to 13 that the gap got tighter. Initially the
static parameters performed better since exploitation is not as important. To
increase our performance at lower dimension, we can simply decrease the rate at
which recombination drops and mutation rate increases. This is accomplished by
decreasing the k value in sections 3.3.2 and 3.3.3.
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5.3.3 Is Genocide beneficial?
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Figure 17: The effectiveness of Genocide in n=6
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Figure 18: The effectiveness of Genocide in n==8
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Figure 19: The effectiveness of Genocide in n=10

Genocide was clearly beneficial at all tested genome sizes. Especially at lower,
where it enables us to quickly spawn individuals to explore huge subsets of the
search space. Albeit, for similar reasons mentioned in previous sections, exploration
loses its powers at higher dimensions. Nonetheless, it does make a difference. It is
worthy of investigating whether one should not only take into account the fitness
of individuals upon genocide but also their age. This would enable new and less fit
candidate solutions to be genocided but older fit individuals to employ exploitation
strategies, hence further increase the rate of convergence.

Page 25 of 30



TARI29 Artificial Intelligence, 2024 Evolutionary Computation Assignment

5.3.4 When to trigger Genocide?
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Figure 20: Trigger Genocide Analysis in n=6
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Figure 21: Trigger Genocide Analysis in n=8
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Figure 22: Trigger Genocide Analysis in n=10

It did not appear to make any notable difference if we triggered the genocide based
on stagnation of the most fit individual in the population or the mean fitness of
the population. At least, one can not meaningfully extrapolate that conclusion. We
can note from figure 13 that as the mean tends to stagnate, so does the maximum
value. However, in cases where that is not the case, one should trigger the genocide

based on the mean in order to capture global population trends. It may not always
be case that their behaviour is similar.
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5.3.5 Rate of Genocide?
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Figure 23: Rate of Genocide Analysis in n=6
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Figure 24: Rate of Genocide Analysis in n=8
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Figure 25: Rate of Genocide Analysis in n=14

We lastly experiment with varying genocide rates. The genocide rate decreases
by generation count. It is regulated by the exploration factor. It is higher in the
beginning and low at higher generation counts. Similar to past experiments, as the
genome size kept increasing, the average convergence rate of the population with a
dynamic genocide rate kept improving until it beat the static.

Page 27 of 30



TARI29 Artificial Intelligence, 2024

Evolutionary Computation Assignment

5.4 Results of algorithm comparisons

Algorithm Version

Average Evaluations

Average Time (s)

New and Improved GA

1224.0

0.0412

Old GA

1246.1

12.9645

Table 5: Performance Comparison for GENOME 8

Algorithm Version

Average Evaluations

Average Time (s)

New and Improved GA

6840.0

0.2372

Old GA

9800

208.1015

Table 6: Performance Comparison for GENOME 12

The new genetic algorithm performs better both in terms of time, as well as
evaluations needed to find a solution. With the margins increasing with the genome
size. Looking at the numbers, the new one managed to find solutions at 30,20%
less iterations whilst being 99.89% faster.

9800 — 6840
_ 100 =~ 30.2
< 9300 >>< 00 ~ 30.20%
208.10 — 0.237
100 ~ 99.
( 208.10 ) x 100 ~ 99.89%

6 Final Remarks

6.1 Summary

Within this project we have explored the application of Genetic Algorithms specifi-
cally on the N-Queens problem, where the goal is to place find a valid placement
of N chess queens on a N X N chess board, in such a way that no queen threatens
each other. The project focused on how different combinations of genetic operators,
parameter values, and additional strategies will effect the performance on this
specific problem. We used parameter tuning techniques to evaluate 500 different
setups against each other, which in turn produced interesting insights.

We saw that some recombination strategies significantly outperformed others.
Even-cut-and-cross-fill performed worst overall, while partially mapped crossover
performed best, partially given its ability to remove duplicates, which avoids a
large amount of horizontally invalid solutions.
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When testing different mutation strategies we didn’t see quite the same results.
Although there existed a clear outlier, they performed overall the same. The only
strategy that sticks out among the rest is the duplicate replacement strategy, which
mutates values by replacing them with those missing from the solution array. When
this strategy was combined with partially mapped crossover it did not in fact show
a statistically significant difference compared to other mutation strategies.

Interestingly we saw that adjusting mutation rate (between 0.1 and 1.0) and
recombination rate (between 0.7 and 0.95) had less impact on performance compared
to the choice of operators. The project also explored using dynamic parameter
values that adjusts with every generation. This did not either produce better
results.

Finally, the introduction of genocide to prevent stagnation improved performance
markedly, showing promising improvements at the three different sizes of N-Queens
that were test.

This project and report have demonstrated the effectiveness of evolutionary algo-
rithms for N-Queens, which suggests its continued effectiveness on other problems.

6.2 The Future

We believe that we have produced some interesting results, but there are several
more avenues that could be explored. Both in terms of improving what we have,
as well as exploring other techniques. Listed below are things we believe could be
interesting to explore.

Genetic operators: There are still many genetic operator strategies that we did
not explore. A wider range of operators could yield even better results.

Operator selection: Implementing a system that selects operators based on the
current generation could enhance adaptability.

Aging population: Introducing aging into the population, where older individuals
are more exploitative and younger ones more explorative, could help maintain a
balance between exploration and exploitation.

Problem size: Expanding the analysis to a wider range of N-Queens problem
sizes could provide insights into the algorithm’s scalability and effectiveness across
for even larger problem sizes.

Comparison: A more in depth comparison with other studies, possibly including
quantitative analysis, could give us broader insights while comparing our results to
others.
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